首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   868篇
  免费   219篇
  国内免费   759篇
测绘学   28篇
大气科学   4篇
地球物理   56篇
地质学   1708篇
海洋学   6篇
天文学   2篇
综合类   31篇
自然地理   11篇
  2024年   4篇
  2023年   21篇
  2022年   43篇
  2021年   57篇
  2020年   55篇
  2019年   63篇
  2018年   68篇
  2017年   91篇
  2016年   68篇
  2015年   106篇
  2014年   127篇
  2013年   106篇
  2012年   153篇
  2011年   113篇
  2010年   87篇
  2009年   102篇
  2008年   55篇
  2007年   75篇
  2006年   67篇
  2005年   44篇
  2004年   48篇
  2003年   48篇
  2002年   34篇
  2001年   25篇
  2000年   28篇
  1999年   36篇
  1998年   34篇
  1997年   13篇
  1996年   21篇
  1995年   15篇
  1994年   12篇
  1993年   4篇
  1992年   7篇
  1991年   5篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   5篇
  1985年   1篇
  1979年   1篇
排序方式: 共有1846条查询结果,搜索用时 140 毫秒
1.
以陕西省某地质灾害隐患点1∶2000航飞生产任务为背景,本文结合垂直起降式无人机航摄技术特点和地质灾害隐患点区域实际情况,通过详细对比几种无人机航摄像控点布控方案的优劣,研究无人机像控点布设方案对空三加密精度的影响,总结了适用于不同地质灾害隐患点的像控点布设方案。通过本文研究,为今后制定地质灾害隐患点的无人机航摄像控点布设方案提供了参考依据。  相似文献   
2.
西藏驱龙超大型斑岩铜矿床:地质、蚀变与成矿   总被引:54,自引:17,他引:37  
驱龙超大型矿床是一个产于后碰撞伸展环境下、与大洋俯冲无关的新型斑岩铜矿。文章通过对驱龙铜矿床地质、蚀变与矿化的详细研究,建立了驱龙中新世岩浆演化序列,初步查明了岩浆浅成侵位的构造控制要素,厘定了主要的围岩蚀变类型及空间展布规律,查明了引起各期蚀变事件的地质记录及矿化的空间分布规律,并探讨了成矿物质沉淀的机制,初步建立了该矿床的成矿模型。研究表明,驱龙铜矿中新世斑岩是闪长质深部岩浆房不断演化的产物,花岗闪长岩中新发现的、结晶时间为22.2Ma左右的闪长质包体可近似代表深部岩浆房组分,依次产出的花岗闪长岩、呈岩株或岩枝产出的P斑岩、X斑岩及最晚期的闪长玢岩(15.7±0.2)Ma,均为深部岩浆房连续演化的产物,岩浆持续6Ma左右。岩浆演化过程中角闪石、斜长石不断的结晶分异,导致了岩石常量元素、稀土元素及微量元素组成的规律性变化,斑岩埃达克质的特征也因岩浆演化过程中角闪石等矿物的不断结晶分异而引起。X斑岩中锆石的Hf同位素特征表明,岩石可能形成于新生下地壳的部分熔融。大面积产出的花岗闪长岩为驱龙铜矿最主要的含矿围岩,容纳了驱龙矿床70%以上的矿体,主要由斜长石、钾长石和石英组成,具花岗结构-似斑状结构,近EW向产出,其浅成就位可能受背斜控制,其后的各期斑岩均沿该侵位中心上侵,而冈底斯地壳中新世的快速抬升与剥蚀是导致含矿斑岩浅成侵位的根本原因;矿区内的SN向裂隙带既不控岩,也不控矿。浅成侵位的斑岩及深部岩浆房均发生了流体出溶。发生了大量流体出溶的深部岩浆房,是矿区早期蚀变流体的主要来源,显微晶洞构造及单向固结结构(UST)是流体出溶的地质记录。蚀变主要有3种类型,分别为早期的钾硅酸盐化、青磐岩化以及晚期的长石分解。钾硅酸盐化可分为2个阶段,即蚀变矿物以次生钾长石为主的早期钾硅酸盐化和以次生黑云母为主的晚期钾硅酸盐化。青磐岩化因产出的岩石类型不同,蚀变矿物组合具有明显差异性:产于叶巴组地层中的青磐岩化相对较强,蚀变矿物以绿帘石为主;产于花岗闪长岩中的青磐岩化相对较弱,蚀变矿物以绿泥石为主。晚期长石分解蚀变以破坏长石类矿物为特征,蚀变矿物主要为绢云母-绿泥石-粘土等。石英和硬石膏贯穿于上述各种蚀变中。空间上,钾硅酸盐化位于斑岩体及其周围地区,青磐岩化位于钾硅酸岩化外侧。后期形成的长石分解蚀变强烈叠加了早期钾硅酸盐化,介于钾硅酸盐化带与青磐岩化带之间。与早期钾长石化有关的脉体主要为不规则石英-钾长石脉,与晚期黑云母化有关的脉体主要为不规则至板状的石英-硬石膏脉、黑云母脉,与青磐岩化有关的脉体主要为板状的绿帘石-石英脉,与晚期长石分解蚀变有关的脉体主要为板状黄铜矿-黄铁矿脉及黄铁矿脉;在早期钾硅酸盐蚀变与晚期长石分解蚀变转换阶段,发育一组板状的石英-硫化物脉。早期不规则的脉体形成于斑岩结晶早期、矿区裂隙小规模发育阶段;晚期的板状脉体形成于斑岩弱固结或固结之后、矿区大规模连通裂隙发育阶段。驱龙矿区的铜矿化分布较为均一,主体产于花岗闪长岩中,其中,铜矿化主体形成于黑云母化蚀变阶段,转变阶段及长石分解阶段也有大量铜的形成;钼主要形成于转换阶段,长石分解蚀变阶段也有产出。黑云母化阶段,铜的沉淀与角闪石黑云母化、斜长石钾长石化过程中Ca2 的大量释放有关;转换阶段,铜钼矿化可能与压力和(或)温度骤降有关;晚期铜矿化与长石矿化蚀变阶段,斜长石绿泥石化、黑云母绿帘石化过程中Ca2 及Fe2 的释放有关。  相似文献   
3.
滇西北雪鸡坪斑岩铜矿流体包裹体初步研究   总被引:11,自引:2,他引:9  
雪鸡坪中型斑岩铜矿床位于三江地区义敦岛弧南端的中甸弧,成矿斑岩为石英闪长玢岩和石英二长斑岩,属于印支期产物。含矿岩体蚀变分带明显,由中心向外发育强硅化带→石英绢云母化带→粘土化-石英绢云母化带→青磐岩化带,工业矿体赋存于斑岩体中心强硅化和石英绢云母化带内。矿化类型以网脉状矿化为主,细脉浸染状矿化不发育。本文对主要矿化阶段石英脉中的流体包裹体系统进行了包裹体岩相学、显微测温学和激光拉曼谱学研究,发现与成矿有关的流体包裹体可以分为水溶液包裹体、CO2包裹体和含子矿物包裹体3类,子矿物主要为石盐、方解石、赤铁矿和少量CaCl2水合物及不透明硫化物。其中含子矿物包裹体均一温度为230~420℃,盐度为33.48%~75.40%NaCl equiv.,密度为1.01~1.09g/cm^3。激光拉曼光谱分析表明,包裹体的液相成分主要为H2O,气相成分为H2O和CO2。早期水溶液包裹体和CO2包裹体共生,其均一温度相近,以及纯CO2包裹体的发现,指示成矿流体存在不混溶现象,这种不混溶是由原始岩浆流体“二次沸腾”作用产生的。CO2相分离、温压条件降低和pH值升高是雪鸡坪斑岩铜矿硫化物沉淀的主要原因。晚期低温、低盐度的流体可能来源于大气降水与岩浆流体的混和,对矿化的意义不大。  相似文献   
4.
矿区地质、地球化学特征研究入手,总结了综合找矿标志,指出了进一步找矿方向。研究表明该矿床成矿组分单一,异常元素组合主要为Mo、Bi、Ag,次为W、Sn、Zn、Cu、Pb,仅有钼能形成较大规模的异常;矿床元素水平分带序列为(Mo-Bi-Ag)-(W-Sn)-(Pb-Zn-Cu),垂向分带序列为(Mo-Ag-Pb-Zn)-Cu-(Bi-W-Sn),并以w(Mo)/[w(Bi)×100]≥65,[w(Pb)×w(Zn)/w(W)×w(Sn)]≥25为判别标志,来预测深部盲矿体的存在。  相似文献   
5.
舒兰市福安堡钼矿床地质特征及找矿意义   总被引:1,自引:0,他引:1  
本文较详细地介绍了福安堡中型斑岩钼矿床的地质特征、找矿标志及找矿方法,对在吉林地区北部舒兰—蛟河一带分布的印支—燕山期花岗岩区寻找大、中型斑岩型钼矿床具有重要的指导意义。  相似文献   
6.
北达巴特斑岩铜钼矿产于华力西期流纹斑岩中,矿体呈脉状,铜矿体地表为氧化物,钼矿体主要赋存于深部的流纹斑岩中,其矿化作用呈上铜下钼的双层矿化结构模式,矿化为细脉浸染状。矿床的成因类型为斑岩型铜钼矿。  相似文献   
7.
竹鸡顶斑岩型铜矿位于西南三江成矿带内,热液蚀变以青磐岩化、泥化为特征。区内现已圈出1个矿带和2个矿化带,并有幅频激电异常、土壤铜异常与之套合。该区具有较好的找矿前景。  相似文献   
8.
内蒙古阿鲁科尔沁旗好力宝铜钼矿床地质特征及找矿方向   总被引:5,自引:1,他引:4  
沈光银 《地质与资源》2008,17(4):273-277
好力宝铜钼矿床属与燕山期隐伏的隐爆角砾状斜长花岗斑岩和碎裂次石英斑岩有关的热液脉状和斑岩型矿床.铜钼矿体受隐爆角砾岩筒和岩体控制,矿化产在蚀变隐爆角砾岩和硅化带中.今后的找矿方向应侧重于对斜长花岗斑岩与围岩接触带和碎裂次石英斑岩中化探异常和低阻高极化异常地段的探索.  相似文献   
9.
赵如意 《地质与勘探》2023,59(4):716-733
广东省大宝山矿床是南岭成矿带唯一的大型铜多金属矿床,此次研究在矿区中南部发现了细脉浸染状铜矿的新类型。为确定其是否为斑岩型铜矿的成因类型,本文在梳理南岭成矿带铜成矿条件和成矿规律的基础上,查明了矿区中南部英安斑岩的蚀变和铜矿化特征。综合研究认为南岭成矿带早侏罗世中酸性斑岩的小岩体较多,叠加多期断裂构造和碳酸盐岩建造,非常有利于铜多金属成矿物质的运移、富集。大宝山英安斑岩发育黑云母化、钾长石化、青磐岩化、绢英岩化、泥化等蚀变类型,铜矿化与绢英岩化、绿泥石化关系密切。大宝山铜矿中的英安斑岩沿逆冲推覆构造侵位并呈岩墙状产出,冷却过程中受区域构造应力产生了一组平行裂隙,岩浆房去气作用排出的热液沿裂隙蚀变围岩并充填成矿。大宝山斑岩型铜矿取得的找矿勘查成果表明,“全位成矿,缺位找矿”理念可以有效指导靶区圈定和老矿山外围(深部)找矿勘查,早侏罗世的南岭具有形成较大规模斑岩型铜矿的条件。  相似文献   
10.
In the Sandıklı (Afyon) region, western Taurides, the Late Proterozoic rocks of the Sandıklı basement complex are composed of low-grade meta-sedimentary rocks (Güvercinoluk Formation) intruded by felsic rocks (Kestel Cayı Porphyroid Suite, KCPS). The KCPS is a deformed and highly sheared, dome-shaped rhyolitic body with a granitic core. Quartz porphyry dikes intrude both the slightly metamorphic igneous and the sedimentary rocks of the basement complex. Both the quartz porphyries and rhyolites were converted into mylonites with relict igneous textures. Geochemical data show that these felsic igneous rocks are subalkaline and mainly granitic in composition with SiO2 >72 wt% and Al2O3 >11.5 wt%. The chondrite-normalized incompatible trace element patterns are characterized by distinct negative Rb, Nb, Sr, P, Ti, and Eu with enrichment in Th, U, La, Ce, Nd, Sm, and Zr. The REE patterns of the felsic rocks indicate a strong enrichment in LREE but display slightly flat HREE patterns. According to geochemical characteristics and petrogenetic modeling, extrusive and intrusive rocks of the KCPS were probably derived from an upper continental crustal source (partial melting of granites/felsic rocks) by 18–20% fractional melting plus 18–20% Rayleigh fractional crystallization, which seems to be the most effective igneous process during the crystallization of the KCPS. Single zircon age data from the granitoids and fossils from the disconformably overlying sedimentary successions indicate that the metamorphism and the igneous event in the Taurides are related to the Cadomian orogeny. Based on the geological, geochemical and petrogenetic correlation of the post-collisional granitoids it is further suggested that the Tauride belt in western central Turkey was in a similar tectonic setting to the Gondwanan terranes in North Africa (Younger Granitoids) and southern Europe (Spain, France, Bohemia, Brno Massifs) during the Late Cadomian period.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号